GraphModule(
(0): Module(
(0): QuantizedConvReLU2d(3, 64, kernel_size=(7, 7), stride=(2, 2), scale=0.029317768290638924, zero_point=0, padding=(3, 3))
(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(4): Module(
(0): Module(
(conv1): QuantizedConvReLU2d(64, 64, kernel_size=(3, 3), stride=(1, 1), scale=0.017887497320771217, zero_point=0, padding=(1, 1))
(conv2): QuantizedConv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), scale=0.0466480627655983, zero_point=66, padding=(1, 1))
)
(1): Module(
(conv1): QuantizedConvReLU2d(64, 64, kernel_size=(3, 3), stride=(1, 1), scale=0.017889995127916336, zero_point=0, padding=(1, 1))
(conv2): QuantizedConv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), scale=0.07470479607582092, zero_point=66, padding=(1, 1))
)
)
(5): Module(
(0): Module(
(conv1): QuantizedConvReLU2d(64, 128, kernel_size=(3, 3), stride=(2, 2), scale=0.0174386166036129, zero_point=0, padding=(1, 1))
(conv2): QuantizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), scale=0.047718875110149384, zero_point=60, padding=(1, 1))
(downsample): Module(
(0): QuantizedConv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), scale=0.04965509846806526, zero_point=68)
)
)
(1): Module(
(conv1): QuantizedConvReLU2d(128, 128, kernel_size=(3, 3), stride=(1, 1), scale=0.019585009664297104, zero_point=0, padding=(1, 1))
(conv2): QuantizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), scale=0.05827442184090614, zero_point=70, padding=(1, 1))
)
)
(6): Module(
(0): Module(
(conv1): QuantizedConvReLU2d(128, 256, kernel_size=(3, 3), stride=(2, 2), scale=0.02278205193579197, zero_point=0, padding=(1, 1))
(conv2): QuantizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), scale=0.05654977634549141, zero_point=57, padding=(1, 1))
(downsample): Module(
(0): QuantizedConv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), scale=0.019852932542562485, zero_point=75)
)
)
(1): Module(
(conv1): QuantizedConvReLU2d(256, 256, kernel_size=(3, 3), stride=(1, 1), scale=0.021630365401506424, zero_point=0, padding=(1, 1))
(conv2): QuantizedConv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), scale=0.06945421546697617, zero_point=73, padding=(1, 1))
)
)
(7): Module(
(0): Module(
(conv1): QuantizedConvReLU2d(256, 512, kernel_size=(3, 3), stride=(2, 2), scale=0.019869942218065262, zero_point=0, padding=(1, 1))
(conv2): QuantizedConv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), scale=0.07700460404157639, zero_point=63, padding=(1, 1))
(downsample): Module(
(0): QuantizedConv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), scale=0.045847173780202866, zero_point=68)
)
)
(1): Module(
(conv1): QuantizedConvReLU2d(512, 512, kernel_size=(3, 3), stride=(1, 1), scale=0.02446889691054821, zero_point=0, padding=(1, 1))
(conv2): QuantizedConv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), scale=0.3400780260562897, zero_point=54, padding=(1, 1))
)
)
)
(1): Module(
(0): Module(
(mp): AdaptiveMaxPool2d(output_size=1)
(ap): AdaptiveAvgPool2d(output_size=1)
)
(2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): QuantizedDropout(p=0.25, inplace=False)
(4): QuantizedLinearReLU(in_features=1024, out_features=512, scale=0.5987890958786011, zero_point=0, qscheme=torch.per_channel_affine)
(6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(7): QuantizedDropout(p=0.5, inplace=False)
(8): QuantizedLinear(in_features=512, out_features=2, scale=0.6221694350242615, zero_point=113, qscheme=torch.per_channel_affine)
)
)